Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP

نویسندگان

  • A A McCracken
  • J L Brodsky
چکیده

To investigate the mechanisms of ER-associated protein degradation (ERAD), this process was reconstituted in vitro. Established procedures for post-translational translocation of radiolabeled prepro-alpha factor into isolated yeast microsomes were modified to inhibit glycosylation and to include a posttranslocation "chase" incubation period to monitor degradation. Glycosylation was inhibited with a glyco-acceptor peptide to compete for core carbohydrates, or by using a radio-labeled alpha factor precursor that had been genetically engineered to eliminate all three glycosylation sites. Inhibition of glycosylation led to the production of unglycosylated pro-alpha factor (p alpha F), a processed form of the alpha factor precursor shown to be a substrate of ERAD in vivo. With this system, both glycosylated and unglycosylated forms of pro-alpha factor were stable throughout a 90-min chase incubation. However, the addition of cytosol to the chase incubation reaction induced a selective and rapid degradation of p alpha F. These results directly reflect the behavior of alpha factor precursor in vivo; i.e., p alpha F is a substrate for ERAD, while glycosylated pro-alpha factor is not. Heat inactivation and trypsin treatment of cytosol, as well as addition of ATP gamma S to the chase incubations, led to a stabilization of p alpha F. ERAD was observed in sec12 microsomes, indicating that export of p alpha F via transport vesicles was not required. Furthermore, p alpha F but not glycosylated pro-alpha factor was found in the supernatant of the chase incubation reactions, suggesting a specific transport system for this ERAD substrate. Finally, the degradation of p alpha F was inhibited when microsomes from a yeast strain containing a disrupted calnexin gene were examined. Together, these results indicate that cytosolic protein factor(s), ATP hydrolysis, and calnexin are required for ER-associated protein degradation in yeast, and suggest the cytosol as the site for degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER

BACE457 is a recently identified pancreatic isoform of human beta-secretase. We report that this membrane glycoprotein and its soluble variant are characterized by inefficient folding in the ER, leading to proteasome-mediated ER-associated degradation (ERAD). Dissection of the degradation process revealed that upon release from calnexin, extensively oxidized BACE457 transiently entered in disul...

متن کامل

Transient calnexin interaction confers long-term stability on folded K+ channel protein in the ER.

We recently showed that an unglycosylated form of the Shaker potassium channel protein is retained in the endoplasmic reticulum (ER) and degraded by proteasomes in mammalian cells despite apparently normal folding and assembly. These results suggest that channel proteins with a native structure can be substrates for ER-associated degradation. We have now tested this hypothesis using the wild-ty...

متن کامل

Inhibition of invariant chain (Ii)-calnexin interaction results in enhanced degradation of Ii but does not prevent the assembly of alpha beta Ii complexes

Calnexin is a resident protein of the endoplasmic reticulum (ER) that associates with nascent protein chains. Among the newly synthesized integral membrane proteins known to bind to calnexin is invariant chain (Ii), and Ii release from calnexin coincides with proper assembly with major histocompatibility complex (MHC) class II heterodimers. Although calnexin association with several membrane gl...

متن کامل

A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation.

Proteins expressed in the endoplasmic reticulum (ER) are subjected to a tight quality control. Persistent association with ER-resident molecular chaperones prevents exit of misfolded or incompletely assembled polypeptides from the ER and forward transport along the secretory line. ER-associated degradation (ERAD) is in place to avoid ER constipation. Folding-incompetent products have to be iden...

متن کامل

Glycosylation-independent ERAD pathway serves as a backup system under ER stress

During endoplasmic reticulum (ER)-associated degradation (ERAD), terminally misfolded proteins are retrotranslocated from the ER to the cytosol and degraded by the ubiquitin-proteasome system. Misfolded glycoproteins are recognized by calnexin and transferred to EDEM1, followed by the ER disulfide reductase ERdj5 and the BiP complex. The mechanisms involved in ERAD of nonglycoproteins, however,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 132  شماره 

صفحات  -

تاریخ انتشار 1996